Trueline
 Model 560-5143-1
 Fiber Optic Transceiver Manual

SECTION ONE

1. GENERAL INFORMATION
1.1. PURPOSE OF EQUIPMENT
1.1.1. PHYSICAL SPECIFICATIONS
1.1.2. ENVIRONMENTAL SPECIFICATIONS
1.1.3. POWER REQUIREMENTS
1.1.4. FUNCTIONAL SPECIFICATIONS

SECTION TWO

2. INSTALLATION AND OPERATION
2.1. HOT-SWAPPING
2.2. REMOVAL AND INSTALLATION
2.3. SETUP
2.4. FAULT INDICATION
2.5. MAINTENANCE

SECTION THREE

3. THEORY OF OPERATION
3.1. GENERAL INFORMATION
3.2. CIRCUIT BOARD DESCRIPTION
3.3. DETAILED DESCRIPTION
3.3.1. INPUT CHANNEL
3.3.2. OUTPUT CHANNEL
3.3.3. POWER SUPPLY

SECTION FOUR

4. DETAILED DRAWINGS
4.1. 560-5143-1 DETAILED DRAWINGS / BILL OF MATERIALS
\qquad

SECTION ONE

1. GENERAL INFORMATION

1.1. PURPOSE OF EQUIPMENT

The Model 560-5143-1 Fiber Optic Transceiver card provides a fiber optic input and output interface for the backplane reference signals REF A, B, or C. The card can be configured to drive REF A, B, or C with the fiber optic input signal and/or to transmit REF A, B, or C via the fiber optic output. The card is intended to be configured as a repeater, where the output is an echo of the input.

The three backplane signals are distributed via 50 ohm controlledimpedance traces, terminated at Slot 17. For best signal quality, the Transceiver card must be located in Slot 1 through 4.

1.1.1. PHYSICAL SPECIFICATIONS

Dimensions: $\quad 0.8 " w \times 4.4 " \mathrm{~h} \times 5.0 " \mathrm{~d}(2 \mathrm{~cm} \times 11 \mathrm{~cm} \times 13 \mathrm{~cm})$
Weight: \quad Approximately $1 / 2$ pound $(1 / 4 \mathrm{~kg})$
1.1.2. ENVIRONMENTAL SPECIFICATIONS

Operating Temp: $\quad 0^{\circ}$ to $+50^{\circ} \mathrm{C}$
Storage Temp: $\quad-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
Humidity:
Cooling Mode: Convection

1.1.3. POWER REQUIREMENTS

Voltage:
Power:
18-72 VDC $\pm 20 \%$
3 W

1.1.4. FUNCTIONAL SPECIFICATIONS

1.1.4.1. RECEIVER FIBER OPTIC INPUT

Signal: $\quad 820 \mathrm{nM},-16 \mathrm{dBm}$ to -26 dBm
Connector: ST
Fiber type: Multi-mode $50,62.5$ or 100 micron

1.1.4.2. TRANSMITTER FIBER OPTIC OUTPUT

Signal: $\quad 890 \mathrm{nM},-18.8 \mathrm{dBm}$ typical, into 50 micron fiber Signal: $\quad 890 \mathrm{nM},-16 \mathrm{dBm}$ typical, into 62.5 micron fiber Signal: $\quad 890 \mathrm{nM},-12 \mathrm{dBm}$ typical, into 100 micron fiber Connector: ST

1.1.4.3. RECEIVER BACKPLANE OUTPUT TO REF A, B, AND C Signal Type: Squarewave, AC-coupled Amplitude: 4 Vpp into 50 ohms

1.1.4.4. TRANSMITTER BACKPLANE INPUT FROM REF A, B, AND C Signal Type: Squarewave Amplitude: $\quad 2.2 \mathrm{Vpp}-5 \mathrm{Vpp}$
1.1.4.5. DRC CARD COMPATIBILITY

Location: Slot 1-4
Compatibility: See DRC Card Compatibility Matrix

SECTION TWO

2. INSTALLATION AND OPERATION

2.1. HOT-SWAPPING

All cards, input cables and output cables are hot swappable. It is not necessary to remove chassis power during insertion or removal. Hot swapping and reference-source changes are abrupt, the effects difficult to characterize; however, the system is designed to protect against permanent effects and minimize temporary effects of these events.

Typically, adjacent-card hot swapping has a negligible effect on the Fiber Optic Transceiver. The hot swapping event typically lasts less than one clock-period and has an average of 0 Volts. The effect of redundant power supply switch-over is also negligible.

Hot swapping of a Fiber Optic Transceiver affects the system in varying ways depending upon whether it is configured to drive REF A, B, or C and depending upon which reference input is the currently-highest priority. These effects are discussed in individual card manuals.

2.2. REMOVAL AND INSTALLATION

CAUTION: Individual components on this card are sensitive to static discharge. Use proper static discharge procedures during removal and installation.

Refer to CARD COMPATIBILITY section prior to installing new card.

To remove card, loosen the captive retaining hardware at the top and bottom of the assembly, then firmly pull on the handle, (or on any connector on rear panel adapter cards) at the bottom of the card. Slide the card free of the frame. Refer to the SETUP section for any required switch settings; or, set them identically to the card being replaced. Reinstall the card in the frame by fitting it into the card guides at the top and bottom of the frame and sliding it in slowly, avoiding contact between bottom side of card and adjacent card front panel, until it mates with the connector. Seat card firmly to avoid contact bounce. Secure the retaining screws at the top and bottom of the card assembly.

2.3. SETUP

The setup of the Fiber Optic Transceiver involves selection of the reference: REF A, B, or C. While it is possible to connect the input and output to different references, the card is intended to be used in a repeater configuration. For non-repeater applications, verify that the reference signal (REF A, B, or C) meets the Fiber Optic card input signal specifications. If the card is to be used as a fiber optic receiver only, the
transmitter should be disabled. If the card is to be used as a fiber optic transmitter only, with another card driving REF A, B, or C, the receiver must be disabled.

Use the tables below to set the Fiber Optic Transceiver into the repeater mode. Jumper 1 selects the reference to be driven by the Fiber Optic Receiver. Jumper 2 selects the reference source for the Fiber Optic Transmitter.

To use REF A:

	A	B	C
XCVR-JP1	JUMPER	OPEN	OPEN
XMTR-JP2	JUMPER	OPEN	OPEN

To use REF B:

	A	B	C
XCVR-JP1	OPEN	JUMPER	OPEN
XMTR-JP2	OPEN	JUMPER	OPEN

To use REF C:

	REF A	REF B	REF C
XCVR-JP1	OPEN	OPEN	JUMPER
XMTR-JP2	OPEN	OPEN	JUMPER

To DISABLE FIBER OPTIC RECEIVER:

	REF A	REF B	REF C
XCVR-JP1	OPEN	OPEN	OPEN

To DISABLE FIBER OPTIC TRANSMITTER:

	REF A	REF B	REF C
XMTR-JP2	OPEN	OPEN	OPEN

2.4. FAULT INDICATION

This card has no fault indication.
2.5. MAINTENANCE

This card has no maintenance requirements.

SECTION THREE

3. THEORY OF OPERATION

3.1. GENERAL INFORMATION

This section contains a detailed description of the circuits in the Fiber Optic Transceiver card. These descriptions should be used in conjunction with the drawings in SECTION FOUR.

3.2. CIRCUIT BOARD DESCRIPTION

The 560-5143-1 Assembly provides a single Fiber Optic input channel which may be connected to any one of three signal buses by means of a jumper. It also provides a single Fiber Optic output channel which may likewise be connected to any one of three signal buses. The input channel and the output channel are normally connected to the same signal bus, and the card acts as a repeater, echoing whatever is fed to the input channel out onto the output channel.

3.3. DETAILED DESCRIPTION

Reference drawing 560-5143-1, sheet 3 of 3

3.3.1. INPUT CHANNEL

The signal source for the input channel is an optical signal between 1 and 10 MHz . It is applied via a fiber optic cable to U2 which detects and amplifies the signal. The signal is then applied to U4:A which amplifies the signal further before passing it on to successive stages of U4 to achieve as close to an amplitude limited signal as possible. The output of U4:C is applied to a Schmitt Trigger, U1:A, for squaring up of the edges before applying it to a digital squelch circuit composed of One Shot U5:A, Flip Flop U3:A, and Nand gate U10:A. If a properly limited signal of sufficiently high frequency is applied to this squelch circuit, it opens up the gate and passes on the signal to a paraphrase generator consisting of U11:A and U11:B. This circuit generates two signals that are 180 degrees out of phase with each other which are used to drive a transformer in push pull mode via buffers composed of U1:C, U1:D, $\mathrm{U} 1: \mathrm{B}$, and $\mathrm{U} 1: \mathrm{E}$. The output windings of the transformer are paralleled and connected to one of three signal buses via terminating resistor R2 and Jumper JP1. The output level seen on the bus, which itself is terminated by a 50Ω resistor, is 4 Vpp . If the optical input signal is too low in amplitude, or not present, then the squelch circuits prevents any output from being impressed on the bus. This guards against two possible failures, a broken fiber or a failed driver.

3.3.2. OUTPUT CHANNEL

The signal source for the output channel is a 1 to $10 \mathrm{MHz}, 2.2 \mathrm{Vpp}$ (min.) squarewave available from one of three signal buses coming onto the card through P1 and selected by JP2. It is applied through a $1 \mathrm{~K} \Omega$ resistor, R4, and a 270 pF capacitor, C10, to the base of Q1 which performs a level shifting function to drive the input of Schmitt Trigger U1:F. The output of the Schmitt Trigger is capacitively coupled by C6 to the input of an LM6321 buffer, U9, which is biased to +5 VDC by R6 and R7. This biasing sets the quiescent current of the Fiber Optic Driver U8. Current for this LED device is limited by R15 and R16 in parallel. Note that the component designated C23 is now actually a Zero Ω resistor. The actual range of acceptable input signals goes from 2.2 Vpp to 10 Vpp as well as 1 Vpk to 5 Vpk , although monopolar signals are not normally used on this design.

3.3.3. POWER SUPPLY

Power is applied to the board at a nominal 48 VDC level. It is filtered by L1, C9, and C19, and applied to a DC to DC converter, U7, which is used to supply +10 VDC to the on card circuitry. A linear post regulator, U6, supplies +5 VDC to the logic and receiver circuits. Both the +10 VDC and the +5 VDC levels are heavily filtered by tantalum and ceramic capacitors. In addition RF chokes L2 and L3 are employed to isolate the transmitting section and the power supply section of this card from the receiving section of the card.

SECTION FOUR

4. DETAILED DRAWINGS
4.1. 560-5143-1 DETAILED DRAWINGS / BILL OF MATERIALS

				BEy			
PART IDENTIPIER	DESCMIP10 1	DESCRIPTIOH 2	DATE	ECN ${ }^{\text {3 }}$	QTY／AS8\％	HOM	UL REPEAENOE OESChiplion
560－5143－1	F18ER OPT RCYR GUG MODULE	E MADE FPOU 500－2143				Ef	
O000－APPPOVAL	PARTS LIST APPMOUAL		000000		1.0000	EA	$\text { QWRO, } 1 / 27 / 99$
0000－PL	PARTS LIST AEY LEVEL		000000		1.0000	EA	AEY $8(01-26-99)$
0000－P911T	PEFERETE PFITT		000000		1.0000	Ef	$300-3143-1$ REV 8
0000－RES	PCA AEV LEVEL HERE \％OS		000000		1.0000	EA	560－21采 REV A
0025－000	RES 0 OHM 1／4W 0805	M1C NROT0201\％	000000		1.0000	EA	C23
0085－100		NIS NRCIOFIOROTA	000000		1.0000	EA	F8
0085－1002	RES IOK OHW 1／8160805 te	H10 MRCTOF1002th	000000		2.0000	EA	86.7
0089－102	RES 1．00\％04H 1／8\％ 0805	N10 MRC40F90017R \＆	000000		2.0000	EA	34，5
0085－104		H1：NRCLOFl003TA	000000		1.0000	Ef	月2
0085－121	PES 120 OHM 1／8\％0805 5\％	H1C MRCl2a1217\％	000000		2.0000	EA	815，16
0008－154		WIC HRC12月154TR	000000		1.0000	EA	815
0085－510	AES 51 OHM 1／8i 0805 5\％	H16 HRC／2月51076	000000		1.0000	EA	R1
0088－510	HES 510 OHM 1／8w 0805	N1C NRC12R511076	000000		1.0000	EA	83
023－010－250	CAPAE louf 2504 A	Spmague TVA－1504	000000		1.0000	EA	019
030－095	CAP MONO Q．lUF 50Y R 20\％	WURATA RPET22250104450Y	000000		1，0000	Ef	08
0305－190101	Chp 1009F MPO 10010805	H10 NMCO805NPO101J1007\％	000000		1.0000	EA	63
0365－170270	CAP 27P NPO 10040805	H1C NMCO805月P02101007	000000		1.0000	EA	010
0305－4p0470	CAP 47PF NPO $1004080{ }^{\text {C }}$	N10 NMCO8053P0470，100TH	000000		2.0000	EA	04,12
0365－851104	CAP CRE ，1UF Y5V 5010805 C1，5－8，11，13－15，18，22，24		000000		12.0000	EA	
0378－105	CAP IUF 1643210	NIC NTG－T105\％16TRA	000000		1.0000	EA	620
0575－106	CAP loup 2357343 10\％	H16 176－T100k257h0	000000		1.0000	EA	611
0378－107	CAP TAMT 1000F 1847343	AV TPEE107M016P0125	000100		1.0000	EA	610
0375－225	GAP 2．2UF 1043528		000000		1.0000	${ }_{5}$	821
045－33	IHOUCTOR 32ut 5．5A	DAEEIHM－2 3 3 UH＋／10\％	000000		1.0000	EA	11
049－785270	WHOUCTOR 2TUH AXPAL	W MLLER 78F270	000000		2.0000	EA	12， 13
048－1414T	FIBEA OPT YMTH ST STYLE	HP HP8R－144t	000000		1.0000	EA	48
048－24187C	FIGEP OPT ACMR，ST STYLE	HP HFPR－2416TC	000000		1.0000	EA	08
048－4411	FIEES OPT WUT W／EASHEA	HP HFPR－4411	000000		2.0000	EA	05
054－051		P100 7005	000000		1.0000	EA	11
0578－4002	DIODE 4002	POHW RLP400\％	000000		1.0000	EA	0.1
175－2369	XSISTOR MPS2300 PLSTIS	MPC2369	000000		1.0000	EA	91
176－791．05	16．REQULATOR＋54		000000		1．0000	Eh	110
1768－Lu8321H	HIGH SPEED BUFEA	NATL LHE321／n（\＄010）	000000		1.0000	EA	49
1785－744000	Th4000（1480）	FOA COTHHCOOH	000000		1.0000	EA	410
1785－744014	74 H014 SURFACE MOUMT	714014（5014）	000000		1.0000	EA	41
1785－74404588	74404538（1880）		00000		1.0000	EA	15
1785－74467	744074 （1480）	MOTOROL H HC74HC740	000000		1，0000	EA	43
1785－74HC86	7446日8（1490）	RCA COTH HOREM	000000		1.0000	EA	U11
1785－74H0US	74．40004（1650）	Rea colhhououm	000000		1.0000	EA	14
223－138	Schev Sh OH $24.12 .3 \times 10$	SCHROF ${ }^{\text {S }} 211000138$	000000		2.0000	EA	08
223－144	NuT M2．5	Schatr $21100-144$	000000		2.0000	EA	07
223－379	SCREM OAP UP M2．5 X 11	SCHROFF ${ }^{\text {s } 21100-379}$	000000		2.0000	El	03
223－164	SIEEV，STANLES	SGHROFF $21100-560$	000000		2.0000	EA	04

PATT DDETMHEA	DESCRIPTION	DEscription 2	$\begin{aligned} & \text { FFE } \\ & \text { OATE } \end{aligned}$	E0 ${ }^{\text {a }}$	GY/ASS	U04	PEY	PEFERENCE DESC	
229-102	TUBING TEFLON MSTT20	ICO MALIY STT-20 HRT	000000		0.1000	FT		POR C19	
273-009	TEMINAL TEST POTHT	comp conp PJ-201-25	000000		1.0000	EA		TP5	
273-015	TERM TEST POINT (WHTE)	COMP, CORP TP-104-11-09	000000		0.0000	EA		7P1-4, 8,7	
274-005	PLUG HOLE MU 3/8 DiA	Hh SMITH 3091/HEYCO 2017	000000		2.0000	EA		0	
355-8H0-5	DC-00 18-724In +5/-5 0UT	DATEL 3MR-5/700-1048	000000		1.0000	EA		U7	
38950.94	POLYSWITCH 0.9A (60 VOLT)	RAYCHEM PXE090	000000		1.0000	EA		Fi	
372-96m	CONH.98-P PM DIM BT AMGLE	BEAG 88359-290	000000		1.0000	EA		P1	
$401-01-01-34$		$341898834-01-38$	000000		1.0000	EA		JP1,2 CIT 10 FlT	917\%
403-0001P	WUPER FEMALE LOW PMOFILE	SAMTEC SUT-100-8R-T	000000		4.0000	EA		Fon JP1,2	
500-1212-2	PVL, AEAR FIBR OPT PGNSCU	SCREF	000000		1.0000	EA		02	
500-2143	PGA FIBEA OPT TAMSCVM	FAB	000000		1.0000	EA		01	
LA	LABOR ASSEHELY COST HRES		000000		0	EA		-	
47	LABOR TEST COST HOURS		000000		0	EA			
0¢4500-5143-1	OUTSIDE LABOR 560-5143-1	PGA	00000		1.0000	EA			

